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Introduction to Self-Supervised Contrastive Learning
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Self-Supervised Learning

Self-Supervised Learning learns data representations through manually designed
supervision signals, and then uses the learned representations for downstream tasks.

Training Dataset (no labels)

- [
et Contrastive Learning

» Downstream Task
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Self-Supervised Contrastive Learning

Step 1 of 2: Construct similar sample pairs by data augmentation.

N Samples

2N Augmented Samples
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Self-Supervised Contrastive Learning

Step 2 of 2: Pull the similar sample pairs close to each other in the embedding space.
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The objectives of most contrastive learning algorithms (including SimCLR, MoCo,
Barlow Twins, etc.) can be re-formulated as

min ﬁ(f) E Hf(xl) - f(x2)H2 + ﬁregularlzatlon(f)

x X1,X2€
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Observations in Self-Supervised Contrastive Learning

1. Aligning positive samples (augmented from the “same data point”) is able to gather
the samples from the “same latent class” into a cluster.
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Figure: Embedding Space
(https://github.com/mwdhont/SimCLRv1-keras-tensorflow).
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Observations in Self-Supervised Contrastive Learning

2. Richer data augmentation leads to a more clustered structure in the embedding space.
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Figure: SimCLR’s embedding space with different richnesses of data augmentations.
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Observations in Self-Supervised Contrastive Learning

3. The best composition of augmentations: random cropping and random color
distortion.
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Figure: Experimental results reported in SimCLR paper.
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Observations in Self-Supervised Contrastive Learning

4. Barlow Twins decorrelates components of representation instead of directly optimizing
the geometry of embedding space, but it still results in the clustered structure.
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Figure: Barlow Twins aims to decorrelate the components of representation.
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Theoretical Analysis of Self-Supervised Contrastive Learning

“Towards the Generalization of Contrastive Self-Supervised Learning.”
Huang™t, Yi*, Zhao", Jiang. ICLR 2023.



Intuition

Why does contrastive learning work?
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Intuition

Augmentation Augmentation

H

Close to Each Other
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For a given data augmentation set A, we define the augmented distance between two
different samples as

da(x1,%x0) = min x, — x5 .
A(x1,%2) x;eA(xl),x;eA(xz)” 1~ %ol
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Data Augmentation Modeling

Definition 1 ((o, d)-Augmentation)

The data augmentation set A is called a (o, §)-augmentation, if for each class Cy, there
exists a subset CY C C (called the main part of Cy) such that

* Plx € C?] > o P[x € Cx] where o € (0,1],

® SUPy, et da(x1,%2) < 0.

The sharpness of concentration:

® Larger o and smaller § indicate the sharper concentration of augmented data.

® Richer data augmentation leads to sharper concentration.
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Performance Guarantee of Self-Supervised Contrastive Learning

Theorem 1

Under mild assumptions, if the augmentation used in contrastive learning is
(0,0)-augmented, and

A
,U/Z,U/g < r? (1 - Pmax(aa 575) - 2pmax(a7 675) - TH)

holds for any pair of (¢, k) with ¢ # k, then the error rate of downstream classification

Err(Gr) < (1—0) + R,

where pmax(0,d,€) = 2(1 — o) + +o ( + 275) and Ay, =1 — mingepx) 5 ”""”2

mlne Pe
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Messages From Theorem 1

The generalization ability depends on three key factors:

® (Alignment of positive samples) How close positive samples are located to each
other in the embedding space;

® (Divergence of class centers) How far apart class centers are located from each
other in the embedding space;

©® (Concentration of augmented data) How sharp the concentration of augmented
data is.

Only the first two factors can be optimized during the learning process. In contrast, the
third factor is priorly decided by the pre-defined data augmentation and is independent
of the learning process.
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Messages From Theorem 1
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Loss Functions
¢ InfoNCE (e.g., SImCLR): pull close positive pairs and push away negative pairs.

ef(Xl)Tf(XQ)
LinfoNCE = — XIE/ x1,X2H;:A(X) log ef (x1) Tf(x2) + ef (x1) TF(x)’
X~ €A(X')

where x, x’ are two random samples and A is the data augmentation set.

¢ Cross-Correlation (e.g., Barlow Twins): decorrelate feature components.

szS_CO”_Z(l— ) +)\ZZ 7 (BE[F)f() ] = luxa)

i=1 i=1 i#j

where Cjj = Ex By, x,eax)[fi(x1)fj(x2)], d is the dimension of encoder f, and f is
normalized as [Ex Eyca(x [f(x )2] =1 for each dimension.
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Loss Functions

The above two losses can be split into two parts:

E(f) =K E Hf(xl) - f(Xg)H2 + ['regularization(f)'

X x1,X2€A(x)

e For InfoNCE, we prove that ,uz,ug < Lregularization (f);

® For Cross-Correlation, we prove that s j1y < Lregularization(f)-

Therefore, minimizing these two losses can achieve good alignment and large divergence.
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Follow-Up
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2.6.1 Theoretical Study of SSL

umerous works have attempted to unify various SSL methods. In Huang et al. [2021],
arlow Twins' criterion is shown to be linked to an upper bound of a contrastive loss. This
suggests a link exists between contrastive and covariance-based methods. This direction

criterion are shown to be equlvalent up to normalization by deriving the precise gap
between the two approaches. These results were further validated empirically as methods
were shown to exhibit similar performance and representation properties at ImageNet's
scale (1.2 million samples). The similarities among methods was also studied in Tao et al.
[2021] where this unification was tackled from a study of the losses’ gradients.
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The Effect of Concentration Factor

Dataset Transformations Accuracy

(a) (b) (c) (d) (e) SimCLR Barlow Twins MoCo SimSiam
v v v v v |89.76+0.12 86.91+0.09 90.12+0.12 90.59 +0.11
v v v v 88.48+£0.22 85.38+£0.37 89.69+0.11 89.34 £0.09

CIFAR-10 | v Vv V 83.50+0.14 82.00+£0.59 86.78+0.07 85.38+£0.09
v v 63.23+£0.05 67.83+£0.94 75124028 63.27 £0.30
v 62.74+0.18 67.77+£0.69 74.94+0.22 61.47+£0.74
v v v v Vv |57.74£0.12 57.99+0.29 64.19+0.14 63.48+0.16
v v v v 55.43+£0.10 5522+£0.25 62.50+0.28 60.31+£0.41

CIFAR-100 | v vV 45.10+0.25 50.40+0.64 57.04+0.21 51.42+0.14
v v 28.01+£0.18 3411+£0.59 40.18+0.04 26.26 +0.30
v 27.95+0.09 34.05+1.13 39.63+0.31 25.90+0.83

(a) random cropping; (b) random Gaussian blur;
(c) color dropping; (d) color distortion;
(e) random horizontal flipping.
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The Effect of Concentration Factor

Dataset Color Distortion Accuracy
Strength SimCLR Barlow Twins MoCo SimSiam

1 82.75+0.24 82.58 +0.25 86.68 +0.05 82.50+1.05

CIFAR-10 1/2 78.76 £0.18 81.88+0.25 84.30+0.14 81.80+0.15
1/4 76.37+0.11 79.64+0.34 82.76+0.09 78.80+0.17

1/8 7423+0.16 77.96+0.16 81.20+0.12 76.09 +0.50

1 46.67 £0.42 50.39+1.09 58.50+0.51 49.94+2.01

CIFAR-100 1/2 40.21+0.05 48.76+0.25 55.08+0.09 46.27 +0.46
1/4 36.67 +0.08 46.22+0.71 52.09+0.18 42.02+0.34

1/8 34.75+0.20 44.72+0.26 49.43+0.16 36.26+0.34
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The Effect of Concentration Factor

KNN Error
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Combination of Transformations

Fix one transformation as (a), we observe that (a,d) < (a,c) < (a, e) = (a, b);

Composition (a, d) has the sharpest concentration and best performance.
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Short Summary

® We provide a mathematical formulation to model the data augmentation.

We show that alignment of positive samples, divergence of class centers and
concentration of augmented data are three key factors of self-supervised contrastive

learning.

We prove that SimCLR and Barlow Twins implicitly optimize the first two factors.
® We empirically verify that sharper concentration results in better generalization.

PS: Can Masked Auto-Encoder (MAE) be analyzed by the proposed framework?
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Transferability of Self-Supervised Contrastive Learning

“ArCL: Enhancing Contrastive Learning with Augmentation-Robust Representations.”
Zhao", Du*, Wang, Yao, Huang!. ICLR 2023.



Paradox

Training Dataset Color Distortion

Downstream Task Samples

EAENEC
HEEEEA

Question: Can contrastive learning extract augmentation-invariant features?
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Notations for Distributions

and D4 denote the augmented

distribution after applying some random transformation A which follows distribution 7.

Let D denote the original upstream distribution
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Transferiability Evaluation

We first define “risk” of representation f over downstream distribution D" as
R(f;D?") := mfjn E(x,y)~ptr £(h-f(X),Y),

where h is a linear classifier and ¢ is the loss function.

For an augmentation-invariant representation, the risk should be at about the same level
on two different downstream datasets Dy, , Da, augmented from D.

In other words, |R(f; Da,) — R(f; Da,)| should be small.
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A Counter-Example

Example 1

Data distribution (X1, X2) ~ N(0,/), Y = 1(X; > 0).

Augmentation distribution Ag(X1, X2) = (X1,6 - X2) where 6 ~ N(0, 1).
In this case, Xj is the augmentation-invariant feature.

In fact, we can prove that

Ve > 0,3f,Da,, Da,, st. Laiign(f; D) < e and |R(f; Da,) — R(f; Da,)| > const.
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Proof (1/2)

For any € > 0, let f(x1,x2) = x1 + % " X2

Ealign(f; D, 7T) = IEXNDIE(Al,Ag)NTr2 H f(Al (X)) - f(A2(X))H2
2

I3 3
= Ex, %)~ (0.) E(01.0,)~N(0,1) (X + \/7_91)(2) — (Xt \/7_92)(2)

2
g
= ZEX2~N(0,1)X22E(91,02)~N(o,/)(91 —0p)* =2 (7) <e.
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Proof (2/2)
Let c =0 and ¢’ =2/4/c. Then we have two domains
Dc = {(X1,0): X1 ~ N (0,1)}
Do = {(X1,2X2/Ve): X1 ~ N(0,1), X2 ~ N(0,1)}
Therefore, we can get R(f; D.) =0, but

R(F; Do) = P(Y = 0, hf(X) > 0) + P(Y = 1, hf(X) < 0)
(suppose h € Rt without loss of generality)
= P(Xy <0,f(X) >0)+ P(X; >0,f(X) <0)
=P(X1 <0,X1+X2>0)+P(Xy >0,X; + X2 <0)
1 1 1

8 8 4
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Augmentation-Robust Loss

We define the Augmentation-Robust loss as

Lar(fi D) := Exep sup [|f(Au(X)) — F(A2(X))II* > Laign(f: D).

A1,A2

For any A, let ha € argmin, R(ho f,Da), we have

0 < R(hA/ 9] f;DA) — R(hA o f;DA) <c- (HhAH = ||hA/||),CAR(f,D).
Note that for any augmentation-invariant feature f, R(ha o f;Da) — R(haof;Da) = 0.

The empirical version of AR loss is

Lan(f ZmaXHf i(Xk)) = F(A (X))

17_/

December, 2023
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Plug-And-Play ArCL

Algorithm 1: SimCLR + ArCL
input : Batch size IV, temperature 7, augmentation 7, number of views m, epoch 7',

encoder f, projector g.

1 fort=1,...,T do

2 sample minibatch {X;}¥ ;

3 fori=1,...,N do

4 draw m augmentations A = {A;,..., Ap} ~ 7

5

6

25 = g(f(A]XJ) forj € [m],
# select the worst positive samples;

7 (s = min; pepm{z;2i0/ (125112 1)}; |
8 # select the negative samples;

9 forj=1,...,N do

1 si; = zinzia/(lziallll2.0);

u sijen = Zizia/ (zialllzzl) 5

_ _1 %N exp(s} /7)
2 compute L = —x > ;" log ST oG,

13| update f and g to minimize ;

14 return f
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Performance on Augmented Datasets

Method Batch Size ‘ Augl Aug?2 Aug3 Augé4 Augb Original
SimCLR 256 86.36 83.21 8693 86.42 86.13 86.76
SimCLR + ArCL (views=4) 256 88.68 86.77 89.01 88.70 8831 88.95
E SimCLR + ArCL (views=6) 256 88.95 87.18 89.54 88.92 88.61 89.11
i SimCLR 512 88.62 86.27 8896 8856 88.37 88.81
' SimCLR + ArCL (views=4) 512 89.97 88.06 90.48 8991 89.59 90.20
SimCLR + ArCL (views=6) 512 90.24 89.54 90.69 90.43 90.07 90.69
SimCLR 256 51.65 4755 53.17 5205 5136 5275
o SimCLR+ArCL(views=4) 256 53.76 49.80 55.68 54.19 5296 54.83
E SimCLR+ArCL(views=6) 256 54.13 50.74 55.74 54.75 53.46 55.29
i SimCLR 512 52.28 48.09 5345 5258 5153 53.12
O SimCLR+ArCL(views=4) 512 53.40 50.16 5492 5377 5261 5420
SimCLR+ArCL(views=6) 512 54.00 50.57 56.24 55.04 53.77 55.60

Aug 1: Grayscale; Aug 2: RandomCrop; Aug 3: HorizontalFlip; Aug 4: Colorlitter;
Aug 5: Aug 1 + Aug 4.
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Performance on OOD Datasets

Epochs ‘ Aircraft Caltech101 Cars CIFAR10 CIFAR100 DTD Flowers Food Pets ‘ Avg
MoCo ‘ 41.79 87.92 39.31 92.28 74.90 73.88 90.07 68.95 83.30 ‘ 72.49
§ MoCo + AAL (views=2) 40.53 87.80 38.64 92.23 75.14 7495 88.64 69.24 83.17 | 72.26
5 MoCo + ArCL (views=2) | 44.29 89.79 42.15 93.07 76.70 7420 90.40 70.94 83.68 | 73.91
MoCo + AAL (views=3) 40.41 87.79 42.09 92.64 75.31 7489 89.23 69.37 83.79 | 72.84
MoCo + ArCL (views=3) | 44.57 89.48 4211  93.29 77.33 74.63 91.13 71.16 84.23 | 74.21
MoCo ‘ 83.56 82.54 85.09 95.89 71.81 69.95 9526 76.81 88.83 ‘ 83.30
[
é MoCo + AAL (views=2) 83.87 82.76 8590  96.38 71.43 72,71 9550 76.95 89.05 | 83.84
2 MoCo + ArCL (views= 2 86.05 87.38 87.28  96.33 79.39 7218 95.89 81.36 89.03 | 86.10
[
MoCo + AAL (views=3) 83.07 83.21 85.19 96.37 72.02 7255 9574 79.62 88.83 | 84.07
MoCo + ArCL (views= 3 84.03 87.64 86.34  96.88 80.98 72.87 96.14 81.90 89.20 | 86.22

AAL: Average Alignment Loss.
ArCL: Augmentation-robust Contrastive Loss.
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Short Summary

® We show that contrastive learning fails to learn augmentation-invariant features,
which limits its transferability.

® We propose a theory-inspired loss ArCL which can be easily integrated with existing

contrastive learning algorithms.

® We empirically verify that ArCL significantly improves the transferability of
contrastive learning.

PS: In another ICLR'23 paper, we improve the transferability from the SNE perspective
(see “Your Contrastive Learning Is Secretly Doing Stochastic Neighbor Embedding™).
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Conclusion

Training data distribution — Any downstream data distribution?

Downstream
Distribution @

The Capability Boundary of Self-Supervised Contrastive Learning.
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