
Variational Energy-Based Models: A Probabilistic
Framework for Contrastive Self-Supervised Learning

Tianqi Du1* Yifei Wang1⇤ Weiran Huang2 Yisen Wang3,4†
1 School of Mathematical Sciences, Peking University

2 Huawei Noah’s Ark Lab
3 Key Lab. of Machine Perception (MoE)

School of Intelligence Science and Technology, Peking University
4 Institute for Artificial Intelligence, Peking University

Abstract

Contrastive self-supervised learning has achieved impressive results in various
scenarios. However, there still lacks a probabilistic framework for the princi-
pled design of the learning objective. Starting from the energy-based model, we
design a variational energy-based model (VEM) for the self-supervised learning
setting whose learning objective equals the InfoNCE loss via some slight approx-
imations. Following that, we propose two sampling variants, VEM-Langevin and
VEM-SVGD, for crafting better negative samples to help contrastive learning. Ex-
tensive experiments show that our VEM variants with SimCLR and MoCo indeed
promote the performance on a wide range of inference tasks.

1 Introduction

Recently, contrastive self-supervised learning achieves impressive results in a wide range of scenar-
ios, which follows a general paradigm that pulls the positive samples together while pushing the
negative samples apart. In this work, we aim to establish a principled probabilistic framework for
contrastive learning, so as to enable diverse statistical tasks with contrastive representations.

In this paper, we advocate for the perspective of energy-based models (EBMs), to establish a proba-
bilistic framework for contrastive learning (CL). We formulate the pretext signals as latent variables
v, named as Variational Energy-based Model (VEM). We show the variational inference of VEM is
deeply connected to CL and demonstrate their equivalence under mild approximations. In particu-
lar, VEM explicitly integrates positive and negative samples and thus provides guidelines for their
designs. Thus, we believe VEM is a preferable probabilistic framework for CL.

VEM not only provides a unified probabilistic framework for CL, but also allows us to derive prin-
cipled new variants of CL by adopting different sampling techniques. As for the former, through
VEM, we could integrate the heuristic design of pretext, e.g., data augmentations [1, 7], into a unified
framework, where its role is to specify the probabilistic encoder q(v|x). On the other hand, existing
works have shown that the negative samples adopted in existing CL methods are inefficient [19, 15]
and we can improve the sampling quality by incorporating a fast sampling procedure in the feature
space that does not require back-propagation. Extensive experiments show that our sampling-based
variants of VEM achieve superior performance than vanilla CL on a wide range of tasks, including
image classification, out-of-distribution detection, calibration, and adversarial defense.

⇤Equal contribution.
†Corresponding Author: Yisen Wang (yisen.wang@pku.edu.cn).

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

2 Variational Energy-based Models

In our proposed Variational Energy-based Models (VEMs), we treat the augmented view v 2 Rn as
an unobserved latent variable and define the joint probability over an input x and a view v as

p✓(x,v) =
exp(�E✓(x,v))

Z(✓)
, (1)

with the joint energy function E✓(x,v) and the corresponding normalization constant Z(✓). In-
spired by contrastive learning, we specify the energy function as

E✓(x,v) =� log pd(x)� log pd(v)� sim(f✓(x), f✓(v))/⌧, (2)

where f✓ : X ! Rm denotes an encoder with parameters ✓ and pd(x) is the data distribution. We
let F✓(x,v) = sim(f✓(x), f✓(v))/⌧ and omit ⌧ for brevity of notation in the following. Accord-
ingly, pairs with a large similarity in the feature space will have a lower energy, and thus a higher
probability.

2.1 Variational Inference with Augmentation-based Encoders

To learn VEM with latent variables v, we propose a novel variational framework that naturally
unifies contrastive learning and contrastive divergence.

To begin with, following the conventions of variational inference, we adopt the Evidence Lower
Bound (ELBO) as a tractable lower bound of the log-likelihood,

Epd(x) log p✓(x) =Epd(x)Eqa(v|x) log
p✓(x,v)

qa(v|x)
+DKL(qa(v|x)kp✓(v|x))

�Epd(x)Eqa(v|x) log
p✓(x,v)

qa(v|x)
:= ELBO(✓).

(3)

Here, qa(v|x) denotes a variational posterior for approximating the true posterior p✓(v|x) =

p✓(x,v)/p✓(x). It can be shown that the ELBO lower bounds the log-likelihood and their gap
is the KL divergence between the true and the variational posteriors.

An important design of our VEMs is that we adopt a fixed posterior distribution qa(v|x) instead
of adopting an additional variational module as in previous works. We adopt the same manual data
augmentation strategies for generating latent views. This makes qa(v|x) a uniform distribution over
the support V(x), which is the set of all possible augmented views of v with the augmentation
operator set T = {t : Rn ! Rn}3, i.e., qa(v|x) = 1/|T | if v 2 V(x) and qa(v|x) = 0 if
v /2 V(x). Applying this variational posterior qa(v|x) to the ELBO objective, we can obtain an
equivalent objective by omitting the constants,

ELBO(✓) = Epd(x)qa(v|x) log p✓(x,v), (4)

which resembles the log-likelihood of VEMs by regarding qa(x,v) := pd(x)qa(v|x) as the pseudo
joint data distribution. In the next part, we will discuss how to approximate its gradient with con-
trastive divergence.

2.2 Contrastive Divergence Training

To optimize the ELBO objective (Eq. 4), we apply Contrastive Divergence to approximate the joint
log-likelihood and obtain the following objective,

DKL(pd(x)qa(v|x)kp✓(x,v))�DKL(p
(t)
✓ (x,v))kp✓(x,v)), (5)

with the following gradient

�Eqa(x,v)
@

@✓
E✓(x,v) + E

p(t)
✓ (x,v)

@

@✓
E✓(x,v), (6)

where p(t)✓ (x,v) denotes the t-step Langevin samples starting from qa(x,v).

3For simplicity, we assume these operations are one-to-one mapping.

2

Proposition 2.1. Recall that F✓(x,v) = sim(f✓(x), f✓(v)). The gradient of contrastive diver-
gence is equivalent to the following contrastive learning objective

� E
x ⇠ pd(x)

v ⇠ qa(v|x)

F✓(x,v) + E
sg(x)⇠p(t)

✓ (x)

log E
v⇠pd(v)

exp(F✓(x,v)), (7)

where sg(x) means x is a leaf node when calculating the gradient.

Proposition 2.2. By approximate p(t)✓ (x) with pd(x), InfoNCE is a special form of the loss in Eq.7.

Proposition 2.2 implies that our model is compatible with the existing contrastive learning method.
Thus, our model can be utilized to design better learning objectives and negative sample mining
methods, which will be elaborated on in the next section.

3 Crafting Better Negative Samples from the Model

3.1 Negative Samples in Contrastive Learning

According to [21], in order to get good representation, features should be roughly uniformly dis-
tributed on the unit hypersphere preserving as much information of the data as possible. Point x
with higher p✓ will have larger average similarity with other points in the dataset, which indicates
that dataset points around x are denser. By pushing the anchor away from points with high p✓(x),
the feature of the anchor can be pushed away from dense areas. The whole representation features
thus become more separated. However, the probability of points in the support of pd(x) are all the
same. Pushing the anchor away from points sampled from pd(x) contributes less to the uniformity
of features. Therefore, we propose to get negative samples from p✓(x).

In order to get samples x0
1, . . . ,x

0
K from p✓(x), we can simply perform Langevin dynamics with

x̂0 as the initialization:

x̂t+1
= x̂t

+ ↵rx̂t log

nX

i=1

F (x̂t,vi)

!
+
p
2↵ · ", (8)

where v1, . . . ,vn are samples from pd(v), ↵ is the step size and " is the intensity of the noise. The
last step in Eq. 8 uses Monte Carlo Estimator to estimate the integral over pd(v)..

To cover more low density area of p✓(x), we can perform Stein Variational Gradient Descent
(SVGD) [13] which has a stronger repulsive term. We perform SVGD starting with a group of
particles {x̂(0)

i }Ki=1. For each step, we update the particles with

x̂t+1
i = x̂t

i +
↵

K

KX

j=1

k(x̂t

i, x̂
t
j)rx̂t

j
log

nX

i=1

F (x̂t,vi)

!
+rx̂t

j
k(x̂t

i, x̂
t
j)

!
, (9)

where ↵ is the step size and k(x, y) is an RBF kernel function. Compared to Langevin sampling,
SVGD considers the interaction between samples. Hence, SVGD can get samples with higher qual-
ity within a few steps. However, both two sampling methods are time-consuming with multi-steps
and we need an implementation with low time and memory cost, as it will be shown in the next
section.

3.2 Practical Sampling Strategy

To get samples from p✓(x), we can either perform Langevin dynamics with Eq.8 or SVGD with
Eq.9. However, performing one step of sampling need K forward propagation steps and K backward
propagation steps, which is very time-consuming. It also needs large memory to store the temp
values x̂t

i. To overcome the difficulties, we can directly get samples in the feature space. Recall that
our energy function is E✓(x,v) = � log pd(x) � log pd(v) � sim(f✓(x), f✓(v)). We can redefine
the input of the model from x to z = f✓(x) through re-parameterization. Therefore, the energy
function becomes:

E0
✓(z,v) =� log p0d(z)� log pd(v) + sim(z, f✓(v)) (10)

For performing Langevin Dynamics, we initialize z0 in the feature space and update it with:

zt+1
=zt

+ ↵rzt log

nX

i=1

sim(zt, f✓(vi))

!
+
p
2↵ · " (11)

3

Table 1: Classification Accuracies (%) on CIFAR10, CIFAR100 and Tiny-ImageNet-200 with
ResNet50. All experiments are repeated for 3 times.

CIFAR10 CIFAR100 Tiny-ImageNet-200

Method Test Acc Test Acc1 Test Acc5 Test Acc1 Test Acc5

MoCo 92.56±0.36 69.75±0.27 91.13±0.20 53.25±0.30 77.18±0.44

SimCLR 92.65±0.35 69.94±0.36 91.35±0.19 56.28±0.43 79.09±0.34

VEM-Langevin 93.26±0.23 72.59±0.10 92.85±0.10 60.17±0.16 82.18±0.26

VEM-SVGD 93.23±0.28 72.79±0.16 93.37±0.27 60.28±0.25 82.46±0.24

For this update way, we do not need any forward or backward propagation in each step. Since the
size of a feature (commonly 128 to 512) is usually smaller than the size of an image (3 ⇥ 32 ⇥
32 for CIFAR10), we need less memory to save the temp values. It is similar to perform SVGD
sampling. For better convergence rate, we can create a memory bank. We update the memory
bank with the samples z1, . . . , zK in each training iteration. The samples in the memory bank can
be used to initialize the Langevin or SVGD sampling in the next training iteration. We name our
proposed training methods as VEM-Langevin and VEM-SVGD, respectively. Their pseudocodes
are summarized in Appendix C.

4 Experiments

4.1 Experimental Setup

We carry out experiments on a range of real-world image datasets, including well known benchmarks
like CIFAR10 [12], CIFAR100 [12], and one ImageNet variant: Tiny-ImageNet-200 (200 classes
with image size resized to 64×64) [23]. We adopt ResNet18 [8], ResNet50 [8] and PyramidNet [6]
as the backbones for unsupervised pretraining. The other settings will be described in Appendix D.
Results on the linear evaluation task with ResNet50 are shown below and the other experiments will
be exhibited in Appendix E.

4.2 Performance on the Classification Task

We test models on the corresponding test set after they are finetuned. We compared our proposed
VEM-Langevin ad VEM-SVGD variants with other methods in terms of top-1 accuracy. For datasets
with numerous classes such as CIFAR100 and Tiny-ImageNet-200, we also adopt top-5 accuracy.
Table 1 reports the experiment results with ResNet50 on various datasets.

The results show that the proposed VEMs achieve the best performance among the compared models
in most of the settings. The two variants of VEM both greatly outperform MoCo and SimCLR for
more than 2% in terms of top-1 accuracy on CIFAR100 using ResNet50 as the backbone. Our
method also has a computing time on par with the contrastive models as shown in Appendix G. It is
not surprising since the computing overhead for updating the memory bank is negligible compared
with that for updating the backbone network. We also find VEM-SVGD performs slightly better
than VEM-Langevin. This is due to the higher sampling efficiency of SVGD.

5 Conclusion

In this paper, we proposed variational energy-based model (VEM), a probabilistic framework for
contrastive learning. The variational inference of VEM is deeply connected to contrastive learning
and their equivalence can be established under mild approximations. Based on the deficiency of
sampling negatives from the data distribution, we designed two negative sampling methods in the
feature space which does not need forward and backward propagation. Empirically, our training
methods achieve superior performance than vanilla contrastive learning on a wide range of inference
tasks, indicating the efficacy of our proposed probabilistic framework VEM. Overall, we believe that
VEM is a preferable probabilistic framework for contrastive learning and could inspire more studies
to design better learning objectives and sampling strategies under the framework.

4

Acknowledgment

Yisen Wang is partially supported by the NSF China (No. 62006153), Project 2020BD006 supported
by PKU-Baidu Fund, and Huawei Technologies Inc.

References
[1] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework

for contrastive learning of visual representations. In ICML, 2020.

[2] Bi'an Du, Xiang Gao, Wei Hu, and Xin Li. Self-contrastive learning with hard negative sam-
pling for self-supervised point cloud learning. In ACMMM, 2021.

[3] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adver-
sarial examples, 2014.

[4] Will Grathwohl, Kuan-Chieh Wang, Joern-Henrik Jacobsen, David Duvenaud, Mohammad
Norouzi, and Kevin Swersky. Your classifier is secretly an energy based model and you should
treat it like one. In ICLR, 2020.

[5] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
networks. In ICML, 2017.

[6] Dongyoon Han, Jiwhan Kim, and Junmo Kim. Deep pyramidal residual networks. In CVPR,
2017.

[7] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In CVPR, 2020.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition, 2015.

[9] Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-
distribution examples in neural networks. In ICLR, 2017.

[10] Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, and Dawn Song. Using self-supervised
learning can improve model robustness and uncertainty, 2019.

[11] Beomsu Kim and Jong Chul Ye. Energy-based contrastive learning of visual representations,
2022.

[12] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images,
2009.

[13] Qiang Liu and Dilin Wang. Stein variational gradient descent: A general purpose bayesian
inference algorithm. In NeurIPS, 2016.

[14] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. In
ICLR, 2017.

[15] Joshua David Robinson, Ching-Yao Chuang, Suvrit Sra, and Stefanie Jegelka. Contrastive
learning with hard negative samples. In ICLR, 2020.

[16] Sebastian Ruder. An overview of gradient descent optimization algorithms, 2016.

[17] Florian Schroff, Dmitry Kalenichenko, and James Philbin. FaceNet: A unified embedding for
face recognition and clustering. In CVPR, 2015.

[18] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding, 2019.

[19] HaiYing Wang, Aonan Zhang, and Chong Wang. Nonuniform negative sampling and log odds
correction with rare events data. In NeurIPS, 2021.

[20] Kuan-Chieh Wang, Paul Vicol, James Lucas, Li Gu, Roger Grosse, and Richard Zemel. Ad-
versarial distillation of bayesian neural network posteriors, 2018.

5

[21] Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through
alignment and uniformity on the hypersphere, 2020.

[22] Yifei Wang, Yisen Wang, Jiansheng Yang, and Zhouchen Lin. A unified contrastive energy-
based model for understanding the generative ability of adversarial training. In ICLR, 2022.

[23] Jiayu Wu, Qixiang Zhang, and Guoxi Xu. Tiny imagenet challenge, 2017.

[24] Mike Wu, Milan Mosse, Chengxu Zhuang, Daniel Yamins, and Noah Goodman. Conditional
negative sampling for contrastive learning of visual representations. In ICLR, 2021.

[25] Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized out-of-distribution
detection: A survey, 2021.

[26] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks, 2016.

6

A Proves of Proposition 2.1 and Proposition 2.2

Proposition 2.1. The gradient of contrastive divergence is equivalent to the following contrastive
learning objective

� E
x ⇠ pd(x)

v ⇠ qa(v|x)

F✓(x,v) + E
sg(x)⇠p✓(x)

log E
v⇠pd(v)

exp(F✓(x,v)), (12)

where sg(x) means x is a leaf node when calculating the gradient.

Proof. The conditional distribution is

p✓(v|x) =
p✓(x,v)

p✓(x)
=

exp(�E✓(x,v))/Z(✓)R
exp(�E✓(x,v0))/Z(✓)dv0

=
exp(�E✓(x,v))R
exp(�E✓(x,v0))dv0

=
pd(x)pd(v) exp(F✓(x,v))R

pd(x)pd(v0) exp(F✓(x,v0))dv0

=
pd(v) exp(F✓(x,v))

Epd(v0) exp(F✓(x,v0))
.

(13)

Then we have

� Eqa(x,v)
@

@✓
E✓(x,v) + Ep✓(x,v)

@

@✓
E✓(x,v),

=� Eqa(x,v)
@

@✓
F✓(x,v) + Ep✓(x)

Z
p✓(v|x)

@

@✓
F✓(x,v)dv

=� Eqa(x,v)
@

@✓
F✓(x,v) + Ep✓(x)

Z
pd(v) exp(F✓(x,v))

Epd(v0) exp(F✓(x,v0))

@

@✓
F✓(x,v)dv

=� Eqa(x,v)
@

@✓
F✓(x,v) + Ep✓(x)

@
@✓Epd(v) exp(F✓(x,v))

Epd(v) exp(F✓(x,v))

=� Eqa(x,v)
@

@✓
F✓(x,v) + Ep✓(x)

@

@✓
logEpd(v) exp(F✓(x,v))

(14)

Since the partial derivative operator in the second term is inside Ep✓(x), we need to treat x as a leaf
node when calculating the gradient. Recall that qa(x,v) = pd(x)qa(v|x) and we can easily get the
learning objective as mentioned in the theorem.

Proposition 2.2. By approximate p(t)✓ (x) with pd(x), InfoNCE is a special form of the loss in Eq.7.

Proof. We have

� Epd(x)qa(v|x)F✓(x,v)) + E
p(t)
✓ (v)

logEpd(v) exp(F✓(x,v))

⇡� Epd(x)qa(v|x)F✓(x,v)) + Epd(x) logEpd(v) exp(F✓(x,v))

=� Epd(x)

�
qa(v|x)F✓(x,v)� logEpd(v) exp(F✓(x,v))

�

=� 1

n

nX

i=1

exp(F✓(xi,v
+
i))Pk

j=1 exp(F✓(xi,v
�
ij))

.

(15)

which is just the InfoNCE loss. xi is the anchor, v+
i is the augmented view of xi and {v�

ij} are
negative samples of xi. The last step uses Monte Carlo Estimator to estimate the integral over
qa(v|x) and pd(v).

7

B Discussions on Related Work

EBMs and its Training. Among EBMs, JEM [4] is closely related to our VEM, as both works
aim to establish a EBM formulation for discriminative learning methods and train the network using
SGLD to sample from the model. The difference is that JEM is designed for supervised learning
that requires labeled data and VEM incorporates a latent variable v to assist the self-supervised
learning process. VEM gains better generalizing ability due to the self-supervised learning, which
outperforms JEM in calibration and out of distribution detection tasks.

Contrastive Learning and EBMs. CEM [22] is one closely related work. While CEM focuses
on interpreting the generative ability of adversarial training, ours aim to formulate and improve
the training strategies of canonical contrastive SSL. Technically, different from theirs, we unify the
pretext task of contrastive learning into a variational framework, and derive two new contrastive
learning methods from VEM. Besides, a concurrent work [11] also proposes an energy-based for-
mulation for contrastive learning and adopts sampling techniques to generate negative samples. A
key difference is that they generate samples in the sample space, which requires 10 more training
time than canonical CL methods; instead, our variational formulation is able to perform sampling in
the feature space, which brings negligible computation overhead. Besides, we also propose to use
the particle-based sampling method [13] to encourage feature diversity, and generally outperform
SGLD adopted by theirs.

Contrastive Learning and Negative Sampling. There are many works aiming to craft better neg-
ative samples for better representation learning[15, 17, 2, 24]. Some of them intend to find samples
that are hard to discriminate from the anchor [15, 2, 24]. [15] proposed a distribution over hard
negatives pairs and derived an importance sampling strategy. However, different from theirs, our
method does not distinguish hard and easy negative samples directly. We simply sample from p✓(z)
and aim to get important negative samples.

C Pseudo Code of VEM-Langevin and VEM-SVGD

We present the pseudo codes of VEM-Lamgevin and VEM-SVGD using linear function kernel
k(x, y) = xT y in Algorithm 1 and Algorithm 2, respectively.

Algorithm 1 VEM-Langevin training framework
1: Input: network f✓, epochs E, batch size N , memory bank B, sample number of memory bank

M , feature dim k, noise intensity ", sampling steps ⌘, step size ↵
2: Initialize memory bank B . size of B : M ⇥ k
3: for e = 0 to E do
4: for sampled minibatch x do
5: Independently draw augmentation from x and get xk and xq
6: q = f✓(xq), k = f✓(xk) . size of q,k: N ⇥ k
7: q = normalize(q, dim = 1), k = normalize(k, dim = 1) . size of q,k: N ⇥ k
8: for i 2 [1, 2, . . . , ⌘] do . Update B
9: L = BqT . size of L : M ⇥N

10: Lnorm = softmax(L, dim = 1) . size of Lnorm : M ⇥N
11: �B = Lnormq/N � mean(Lnorm. ⇤ L, dim = 1)

T . ⇤B . size of �B : M ⇥ k
12: Draw M ⇥ k samples independently from N (0, 1) to form Q . size of Q : M ⇥ k
13: B = B + ↵/i ·�B +

p
2↵/i ·Q

14: B = normalize(B, dim = 1)

15: end for
16: Logit-pos = sum(q. ⇤ k, dim = 1) . size of Logit-pos : N ⇥ 1

17: Logit-neg = qBT . size of Logit-neq : N ⇥M
18: Logits = concatenate(Logit-pos,Logit-neg) . size of Logits : N ⇥ (1 +M)

19: Labels = zeros(N)

20: Loss = CrossEntropyLoss(Logits,Labels)
21: Obtain gradient @Loss

@✓ for training f✓
22: end for
23: end for

8

Algorithm 2 VEM-SVGD (with linear kernel function) training framework
1: Input: network f✓, epochs E, batch size N , memory bank B, sample number of memory bank

M , feature dim k, sampling steps ⌘, step size ↵
2: Initialize memory bank B . size of B : M ⇥ k
3: for e = 0 to E do
4: for sampled minibatch x do
5: Independently draw augmentation from x and get xk and xq
6: q = f✓(xq), k = f✓(xk) . size of q,k: N ⇥ k
7: q = normalize(q, dim = 1), k = normalize(k, dim = 1) . size of q,k: N ⇥ k
8: for i 2 [1, 2, . . . , ⌘] do . Update B
9: L = BqT . size of L : M ⇥N

10: Lnorm = softmax(L, dim = 1) . size of Lnorm : M ⇥N
11: �B = Lnormq/N � mean(Lnorm. ⇤ L, dim = 1)

T . ⇤B . size of �B : M ⇥ k
12: �B = BBT

�B/M +B
13: B = B + ↵/i ·�B
14: B = normalize(B, dim = 1)

15: end for
16: Logit-pos = sum(q. ⇤ k, dim = 1) . size of Logit-pos : N ⇥ 1

17: Logit-neg = qBT . size of Logit-neq : N ⇥M
18: Logits = concatenate(Logit-pos,Logit-neg) . size of Logits : N ⇥ (1 +M)

19: Labels = zeros(N)

20: Loss = CrossEntropyLoss(Logits,Labels)
21: Obtain gradient @Loss

@✓ for training f✓
22: end for
23: end for

D Experiments Setup

Backbones. We adopt ResNet18 [8], ResNet50 [8] as the backbones for unsupervised pretrain-
ing. Besides, PyramidNet [6], which is a network architecture improved from ResNet by gradually
increasing the feature map dimension at all units instead of sharply increasing it, has superior gen-
eralization ability on supervised discriminative tasks, hence it may also learn better feature repre-
sentation in unsupervised scenario and we decide to adopt it in our pretraining. The output feature
map from the top network block is average-pooled and projects to a 128-D feature vector through
two-layer MLP. In the downstream task of the linear classification, a linear fully connected classifier
is fine-tuned on top of the frozen feature vector out of the pretrained backbone.

Hyperparameters. For the unsupervised pretraining stage, we use the SGD optimizer [16] with an
initial learning rate in {0.5, 0.2, 0.15, 0.05} for updating the backbone network and {1.0, 0.5} for
updating the memory bank, where a weight decay of 10�4 and a momentum of 0.9 are also applied.
Cosine scheduler [14] is used to gradually decay the learning rate. We choose a temperature of
t = 0.02 to update the memory bank and t = 0.12 for updating the backbone network. The batch
size is set to 256 and the size of memory bank is set to 4096. The network is pretrained for 1000
epochs and the linear layer is then trained for 200 epochs in the downstream task, with a learning
rate of 5 with the cosine learning rate decay and a batch size of 256.

E More experiments

E.1 Full Table of Linear Evaluation Results

We present the full results of linear evaluation with various network architectures in Table 2. The
results show that the proposed VEMs can achieve the best performance among the compared models.

E.2 Evaluation on Model Robustness

A model is considered robust when the accuracy does not change significantly from the baseline
accuracy under various conditions [10]. We mainly explore two aspects: (1) the accuracy of model
classification when being adversarially attacked, that is, the input image is deliberately added with

9

Table 2: Classification Accuracies (%) on CIFAR10, CIFAR100 and Tiny-ImageNet-200 with vari-
ous network architectures. All experiments are repeated for 3 times.

Dataset CIFAR10 CIFAR100 Tiny-ImageNet-200

Network Method Test Acc Test Acc1 Test Acc5 Test Acc1 Test Acc5

ResNet18
MoCo 90.98±0.38 65.00±0.27 88.80±0.12 50.50±0.42 75.78±0.09

SimCLR 90.22±0.27 64.81±0.26 89.03±0.16 50.99±0.29 76.51±0.33

VEM-Langevin 91.63±0.31 65.73±0.24 89.74±0.36 51.78±0.29 77.37±0.09

VEM-SVGD 91.43±0.28 65.77±0.19 89.41±0.41 52.10±0.35 77.19±0.04

ResNet50
MoCo 92.56±0.36 69.75±0.27 91.13±0.20 53.25±0.30 77.18±0.44

SimCLR 92.65±0.35 69.94±0.36 91.35±0.19 56.28±0.43 79.09±0.34

VEM-Langevin 93.26±0.23 72.59±0.10 92.85±0.10 60.17±0.16 82.18±0.26

VEM-SVGD 93.23±0.28 72.79±0.16 93.37±0.27 60.28±0.25 82.46±0.24

PyramidNet

MoCo 90.35±0.49 67.65±0.18 90.89±0.16 52.97±0.36 74.20±0.07

SimCLR 90.24±0.26 67.05±0.46 90.70±0.35 54.22±0.26 76.00±0.37

VEM-Langevin 91.90±0.10 69.71±0.25 91.60±0.29 58.12±0.11 81.05±0.20

VEM-SVGD 92.00±0.18 69.42±0.40 91.58±0.14 58.19±0.10 81.18±0.24

Table 3: (a) Robust accuracies (%) against FGSM on CIFAR10, CIFAR100 and Tiny-ImageNet-200
using ResNet50 as backbone. (b) Transfer learning accuracies (%) with CIFAR10 to CIFAR100 and
CIFAR100 to CIFAR10.

(a) Adversarial robustness

Dataset Method " = 4 " = 8

CIFAR10

MoCo 58.14 48.22
SimCLR 58.23 48.46

VEM-Langevin 59.35 49.16
VEM-SVGD 59.22 48.94

CIFAR100

MoCo 20.22 12.47
SimCLR 21.35 13.17

VEM-Langevin 22.30 15.11
VEM-SVGD 22.42 14.47

ImageNet200

MoCo 14.42 8.91
SimCLR 14.45 8.14

VEM-Langevin 16.42 9.24
VEM-SVGD 16.22 9.28

(b) Transfer learning

Network Method C100 ! C10 C10 ! C100

ResNet18

MoCo 79.04 54.42
SimCLR 79.20 56.32

VEM-Langevin 79.32 56.36
VEM-SVGD 79.29 56.42

ResNet50

MoCo 83.22 65.24
SimCLR 82.59 65.68

VEM-Langevin 86.22 66.25
VEM-SVGD 86.04 65.94

PyramidNet

MoCo 83.44 64.12
SimCLR 83.68 64.13

VEM-Langevin 83.88 65.01
VEM-SVGD 83.92 65.12

some subtle interference that people cannot detect; (2) the accuracy of model classification when the
input sample distribution changes, e.g., testing a model on CIFAR100, which is trained on CIFAR10.

Model robustness with respect to adversarial robustness. Since all models are not trained to resist
the adversarial attack, we only perform FGSM attack [3] for evaluation. For FGSM, we perform one
step on the input image x with xadv = x+"/255·sign(rxL(✓,x, y)), where L is the loss function,
y is the label and " is the perturbation. In this experiment, we set " = 4 and " = 8. We all adopt
the ResNet50 backbone since its performance is the best in the linear classification task. The results
are shown in Table 3(a). Although the accuracies of all models suffer from the adversarial attack,
our proposed VEMs still outperform the compared models on all datasets. This indicates that our
method can slightly strengthen the adversarial robustness of the model.

Model robustness with respect to transfer learning. We also evaluate the pretrained models for
cross-dataset transfer learning. We keep the pretrained backbone frozen, finetune the linear classifier
on the target train set and test the finetuned model on the target test set. The experiments are carried
on two tasks: CIFAR10 to CIFAR100 and CIFAR100 to CIFAR10. Table 3(b) shows the test results
of different methods on various networks. The results show the proposed VEM achieves much
competitive results on both tasks, suggesting VEM has better generalizing ability to the transfer
learning tasks than compared methods. For example, it has achieved a much higher accuracy of
86.22% for CIFAR100 to CIFAR10 task than the SimCLR (82.59%) and MoCo (83.22%).

10

Table 4: ECE and MCE of classifiers pretrained using SimCLR and our method on CIFAR10 and
CIFAR100.

Network ResNet18 ResNet50 PyramidNet
Dataset Method ECE# MCE# ECE# MCE# ECE# MCE#

CIFAR10 SimCLR 0.0129 0.0812 0.0163 0.767 0.0167 0.270
VEM-Langevin 0.00842 0.172 0.0136 0.138 0.0159 0.0970

CIFAR100 SimCLR 0.0222 0.0751 0.0248 0.0988 0.0496 0.105
VEM-Langevin 0.0221 0.0691 0.0240 0.0748 0.0390 0.0736

Table 5: AUROC of various models trained on CIFAR10 in OOD detection, where CIFAR100 is the
out-of-distribution dataset.

Method SimCLR MoCo JEM VEM-Langevin VEM-SVGD
AUROC 0.895 0.884 0.872 0.908 0.909

Table 6: Classification Accuracies of VEM-image and VEM-feature with ResNet50 on CIFAR100.

Method Test Acc Pretraining Time
SimCLR(Baseline) 65.14 6.02h
VEM-Feature 67.23 6.28h
VEM-Image 66.88 48.77h

E.3 Calibration

A classifier model is defined as calibrated when the predicting confidence of the classifying results,
i.e., maxy(p(y|x)) is consistent with the real empirical probability [5]. Thus, in a classification task,
if a large number of samples with a probability of 0.6 predicted to have a label of y by the classifier
are taken out, 60% of them should actually have a label of y. The calibration is an important feature
of a classifier in the real-world scenarios. For high-risk applications, the confidence of classifiers in
their predictions is critical. Expected Calibration Error (ECE) and Maximum Calibration Error
(MCE) are usually used to measure the calibration of a classifier [5]. These two values should be
close to 0 for a well-calibrated classifier. More introduction to these metrics and evaluating details
are shown in Appendix F.

We evaluate both ECE and MCE of the finetuned classifiers pretrained using SimCLR and our
method using Langevin on CIFAR10 and CIFAR100. We find that both classifiers are well calibrated
due to their high accuracies, but our method still improves the calibration on the two datasets as can
be seen in Table 4. In all settings, the ECE of our method is lower than that of SimCLR by 0.5% to
34%. In most of the settings, the MCE of our method is much lower than that of SimCLR. This may
be because our models are trained on a probabilistic framework.

E.4 Out-of-Distribution Detection

Out-of-distribution (OOD) detection is a binary classification problem, where the model is required
to judge whether an example is an OOD example [25]. The classifier’s predictive distribution can be
approached for OOD detection [20]. A useful OOD score that can be derived from this distribution is
the maximum prediction probability maxy p(y|x) [9]. For evaluation, we adopt AUROC [9], which
is a threshold-free metric. We use models trained on CIFAR10 with ResNet50 and let CIFAR100
be the OOD dataset. Besides, we also evaluate JEM since it also uses EBM to form the probability
distribution of the data [4]. Results are shown in Table 5.

In this setting, our VEM-Langevin and VEM-SVGD both slightly outperform the baseline methods,
indicating that our methods learn better representation. Surprisingly, all the SSL methods have
higher scores than the SL method JEM, which may be due to the strong generalizing ability of SSL
methods.

11

Table 7: ECE and MCE of classifiers trained using JEM and VEM-Langevinour method on CI-
FAR10 and CIFAR100

Method Network Params CIFAR10 CIFAR100
ECE MCE ECE MCE

JEM WideResNet-28-10[26] 36.5M 2.29% 20.8% 4.87% 10.12%
VEM-Langevin ResNet50 25.5M 1.36% 13.8% 2.40% 7.48%

E.5 Comparison between Feature Sampling and Image Sampling

In Section 3.2, we have discussed about whether to sample features (VEM-Feature) or sample im-
ages (VEM-Image) and we conduct an experiment to further demonstrate. We adopt CIFAR100 as
the dataset and ResNet50 as the backbone. We both use the Langevin dynamics for sampling. Batch
size is set to 128 and pretraining epoch is set to 400. For the size of the memory bank, we set it to
128 for VEM-Image and set it to 3072 for VEM-Feature since the size of one image equals to 24
times as much as one feature. The other settings are the same as in Section 6.1. We evaluate the
classification results and record the pretraining time as shown in Table 6.

We can see that the pretraining time of VEM-Image is about 8 times as much as VEM-Feature while
the test accuracies are almost the same. This indicates that it is better to sample features during the
pretraining stage.

F More Details on Calibration

Expected Calibration Error (ECE) and Maximum Calibration (MCE). The two metrics work
by first computing the predicting confidence maxy(p(y|xi)) for all xi in the test set. Then all the
confidence scores of the test set are binned into M distinct bins [0, 1/M), [1/M, 2/M), . . . , [(M �
1)/M, 1]. For each bin Bm we can calculate its accuracy

acc(Bm) =
1

|Bm|
X

i2Bm

1yi=ŷi (16)

and its confidence
conf(Bm) =

1

|Bm|
X

i2Bm

p̂i, (17)

where |Bm| denotes the number of elements in Bm, yi denotes the real label of xi, ŷi =

argmaxy(p(y|xi)) denotes the predicted label of xi and p̂i = maxy(p(y|xi)) denotes the pre-
dicting confidence of xi.

Expected Calibration Error (ECE) simply takes a weighted average over the absolute difference
between the confidence and the accuracy:

ECE =

MX

m=1

|Bm|
n

|acc(Bm)� conf(Bm)|. (18)

Maximum Calibration Error (MCE) is more commonly used in safety critical application. It
measures the maximum discrepancy between the confidence and the accuracy:

MCE = max
m

|acc(Bm)� conf(Bm)|. (19)

These two values should be close to 0 for a well-calibrated classifier. For a perfect calibrated classi-
fier, they can reach 0 for any choice of M . In practice, we choose M = 20 for our experiments.

A reliability diagram shows the relation between the accuracy and the confidence with a bar chart.
Each bar contains the images of which the classifier has the confidence of the same bin. The height
of the bar denotes the average accuracy of the images in the bar. A perfect calibrated classifier
will have a reliability diagram with a shape closed to the line y = x. We give intuitive reliability
diagrams on ResNet50 in Figure 1 for better understanding.

We also find an interesting point about the improvement by using self-supervised training. Ac-
cording to [4], Joint Energy-Based Model (JEM) also improves calibration using supervised energy-
based method. We compare the results of ECE and MCE between JEM and our unsupervised method

12

(a) SimCLR on CIFAR10 (b) VEM-LangevinOurs on CIFAR10

(c) SimCLR on CIFAR100 (d) VEM-LangevinOurs on CIFAR100

Figure 1: Reliability diagrams of SimCLR and VEM-Langevinour method on CIFAR10 and CI-
FAR100

Table 8: Pretraining time using ResNet50 on CIFAR100.

Method VEM-Image VEM-Langevin VEM-SVGD SimCLR MoCo
Time/Epoch(sec) 1230.4 154.4 160.9 140.3 147.2

in Table 7. We find that our proposed unsupervised energy-based model outperforms JEM on cali-
bration.

G Training Time

We record the training time in the unsupervised pretraining stage under the settings mentioned in
Section 6.1. We calculate the training time per epoch and show the results of using ResNet50 on
CIFAR100 in Table 8. We can see that VEM-Image costs 7-8 times as much time as VEM-Langevin
and VEM-SVGD do, which indicates the advantage of updating features instead of images on saving
time. VEM-Langevin and VEM-SVGD also have the training time comparable to SimCLR’s and
MoCo’s.

H Experiments on ImageNet100

We also conduct experiments on a large-scale dataset ImageNet100 [18], which is a subset of Ima-
geNet with 100 classes. We adopt ResNet18 and ResNet50 as the backbones. Due to the computa-
tional constraint, we only train 400 epochs for the unsupervised pretraining stage and finetune the

13

Table 9: Classification Accuracies (%) on ImageNet100 with ResNet18 and ResNet50.

Network Method Test Acc1 Test Acc5

ResNet18
MoCo 72.14 92.42
SimCLR 71.54 92.16

VEM-Langevin 73.88 92.60
VEM-SVGD 73.79 92.55

ResNet50
MoCo 77.88 94.98
SimCLR 78.12 94.92

VEM-Langevin 79.64 95.18
VEM-SVGD 79.68 95.12

linear layer for 200 epochs in the downstream task. The initial learning rate is chosen to be 0.10 for
the pretraining stage and the other settings are the same as mentioned in Section 6.1.

Classification Task. We test all the models on the test set of ImageNet100 after they are finetuned.
We compared out proposed methods with SimCLR and MoCo in terms of top-1 accuracy and top-5
accuracy. Results are shown in Table 9. VEM-Langevin and VEM-SVGD both outperform the com-
pared methods with at least 1.5% in the terms of top-1 accuracy, which indicates that our proposed
methods also have better representation learning ability on the large-scale dataset.

I Experiments on Hyperparameters

In this section, we conduct experiments on the influence of the hyperparameters. We choose CI-
FAR100 as the dataset and adopt ResNet50 as the backbone. We explore the influence of different
training epoch, batch size, memory bank size, dimension of the feature space, and the sampling
method adopted in SGLD or SVGD. Based on the experimental setting mentioned in Section 6.1,
we tune the hyperparameters one by one and meanwhile fix the others. In each experiment, the
best learning rate is searched in {0.5, 0.2, 0.15, 0.05}. The linear evaluation accuracies (%) on the
CIFAR100 test dataset are reported.

Epochs. We choose the training epoch from {400, 1000}. Results are shown below.

Table 10: Comparison between different choices of the training epoch on CIFAR100 with ResNet50.
Test accuracies (%) are reported.

Epochs 400 1000
SimCLR 69.72 70.32
MoCo 69.24 70.03
VEM-Langevin 71.44 72.70
VEM-SVGD 71.02 72.88

We can see that all methods benefit from a longer training procedure. Even with a smaller training
epoch, our methods can still outperform the baseline methods by 1% to 2%.

Batch size. We choose the batch size from {128, 256, 512}. Results are shown below.

Table 11: Comparison between different choices of the batch size on CIFAR100 with ResNet50.
Test accuracies (%) are reported.

Batch Size 128 256 512
SimCLR 67.14 70.32 70.64
MoCo 67.85 70.03 70.47
VEM-Langevin 71.36 72.70 73.02
VEM-SVGD 71.12 72.88 73.12

14

We can see that while SimCLR and MoCo have a drop of around 3% by changing the batch size
from 256 to 128, our methods only drop around 1.5%. Although all methods benefit from a larger
batch size, ours are less sensitive to the smaller batch size.

Memory bank size. We choose the memory bank size from {1024, 2048, 4096, 8192, 16384} and
compare the linear evaluation results. Standard deviations of two individual trials are also reported.

Table 12: Comparison between different choices of the memory bank size on CIFAR100 with
ResNet50. Test accuracies (%) are reported.

Memory Bank Size 1024 2048 4096 8192 16384
VEM-Langevin 71.52±0.04 72.04±0.22 72.60±0.14 72.24±0.16 72.26±0.18
VEM-SVGD 71.24±0.13 71.64±0.18 72.74±0.20 72.61±0.22 72.54±0.19

It can be seen that VEM-Langevin will perform better with a smaller memory bank size (1024 and
2048), while VEM-SVGD will perform better with a larger one (4096, 8192, and 16384). However,
we can see that the test accuracy will not grow when the memory bank size is larger than 4096.
Therefore, in our experimental setting, we just set the memory bank size to 4096.

Dimension of the feature space. We choose the dimension of the feature space from {64, 128,
256}. Results are shown below.

Table 13: Comparison between different choices of the feature space dimension on CIFAR100 with
ResNet50. Test accuracies (%) are reported. ⇠ means that the network falls into the trivial point.

Feature Dimension 64 128 256
SimCLR ⇠ 70.32 70.44
MoCo 67.73 70.03 70.26
VEM-Langevin 71.07 72.70 72.51
VEN-SVGD 70.67 72.88 72.64

The results imply that the best feature dimension in all options for VEM is 128 since the accuracies
do not grow and the training time grows when changing the feature dimension from 128 to 256.
When the feature dimension declines to 64, SimCLR breaks down and the performance of MoCo
drops by 2.3%. VEM-Langevin only drops by around 1.7%, which is more stable to the reduction
of the feature dimension.

Sampling method. We now study how to choose the hyperparameters for the SGLD and SVGD
algorithms. We focus on the following settings:

(1) SGLD: Steps=10, Step size for the i-th step: 1/i, Noise intensity for the i-th step:
p

2/i

(2) SGLD: Steps=10, Step size for the i-th step: 1, Noise intensity for the i-th step: 0.03

(3) SGLD: Steps=20, Step size for the i-th step: 1/i, Noise intensity for the i-th step:
p

2/i

(4) SGLD: Steps=20, Step size for the i-th step: 1, Noise intensity for the i-th step: 0.03

(5) SVGD: Steps=10, Step size for the i-th step: 1/i

(6) SVGD: Steps=10, Step size for the i-th step: 1

(7) SVGD: Steps=20, Step size for the i-th step: 1/i

(8) SVGD: Steps=20, Step size for the i-th step: 1

The fixed step size and the fixed noise intensity for SGLD are also adopted in JEM[4] and many
other methods. We compare VEM using these sampling methods in the terms of test accuracy and
the results are shown below.

15

Table 14: Comparison between different choices of the sampling method on CIFAR100 with
ResNet50. Test accuracies (%) are reported.

Methods (SGLD) (1) (2) (3) (4)
Test Acc (%) 72.70 72.14 72.78 71.82

Methods (SVGD) (5) (6) (7) (8)
Test Acc (%) 72.88 72.45 72.96 72.23

We can see that there is no big difference between the results of different methods. However, we
can find that decreasing step size is better than a fixed step size. Therefore, we adopt a decreasing
step size in our paper. More sampling steps will not lead to significantly better results and will lead
to longer training time, so we choose the sampling step to be 10.

16

	Bookmarks
	Introduction
	Variational Energy-based Models
	Variational Inference with Augmentation-based Encoders
	Contrastive Divergence Training

	Crafting Better Negative Samples from the Model
	Negative Samples in Contrastive Learning
	Practical Sampling Strategy

	Experiments
	Experimental Setup
	Performance on the Classification Task

	Conclusion
	Proves of Proposition 2.1 and Proposition 2.2
	Discussions on Related Work
	Pseudo Code of VEM-Langevin and VEM-SVGD
	Experiments Setup
	More experiments
	Full Table of Linear Evaluation Results
	Evaluation on Model Robustness
	Calibration
	Out-of-Distribution Detection
	Comparison between Feature Sampling and Image Sampling

	More Details on Calibration
	Training Time
	Experiments on ImageNet100
	Experiments on Hyperparameters

